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1. INTRODUCTION

In this note, exact solutions of the steady incompressible
Navier-Stokes equations in spherical coordinates have been
obtained. The basic equations for fluid motions are the
Navier-Stokes equation. These equations are non linear and
only alimited number of exact solutions have been obtained.
The existing exact solutions have been published in a wide
variety of journals. A comprehensive recent review of exact
solutions of Navier-Stokes equations is given by Wang [1].
The present paper deals with the exact solution in spherical
coordinates [2].

2. Basic equations

The basic equations in the spherical coordinate system is
governed by the continuity and momentum equations in the
absence of body forces:
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where

V=V(v(r a f)y(n a f)u(n g, 1)),

is the velocity vector, I is the constant density of fluid,

b = i+ V .N is the material time derivative, V is

Dt ot
the nabla operator, p the pressure, M is the dynamic

viscosity of the fluid and V? is the Laplacian operator.

3. Formulation and Exact Solution of the Problem

Let r,q,f

VARVAS

be coordinates with velocity components

V; , where f denotes the coordinates parallel to the

stagnation point. The V, \;  components of momentum

r q 1
equations are;
r-component of momentum equation:
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where U =m/r
the flow is independent of f ,

is the kinematic viscosity of the fluid. If
the r and q components of
momentum Egs. (2) can be solved for v, and Vy subject
to continuity Eq. ().
Let f (r, q) bethe potentia function, where

1
V, = __f q? (6)
r
where the suffixes denote differentiation and ; by definition

satisfies V¥ = 0. Equations (3) and (4), in special cases,

v, =, A
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may be considered to be given by a potentia

functionf (r ,q) . Such type of flow satisfies the equations

(3) and (4) if the pressureis given by
r 1
| "

where [ is constant of integration.

In view of al the above discussion and assumptions,
equation (5) reduces to

G M e\ 10 20y
“or 1 oq or® r*oq® r or
o ®
+cot2q_f}
r< oq

Since equation (8) is anonlinear partial differential equation.
An exact solution [2] to equation (8) is:

f
v, =A+Be™". 9)
where A and B are constants of integration.

3. Examples

(i) Flow along a corner
We consider as domain of the flow the region

D={r=0,qe[0p/2],f e[0p]},

If we seek a velocity V; with the properties

_ p_
vf(r,0>—vf(r,2j 0

v, (r,q) >V, asr— o,

then, a suitable form of the velocity % is

q)

_}f(ry
v (r,g)=V,-Ve" -,
f(r,q)

where the potential satisfies conditions
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f(r,0)=f (r,%jzo,f (r,q) —> o a1 — 0.

As a particular case we note

f(r,q)=krsin(2q), k>0,

with velocity field
. 1
v, =—f =-ksin(Zy), v, =—=f, =-2kcos(2),
r
K
——rsin(2q)
v =V, —Ven o

(if) Flow outside a sphere

Suppose we consider the region
D={rzr,qe[0,2p].f €[0p]},
and seek a velocity with V; (r,,q) =0 and V; (r,q) =V,

a [ —o. A suitable form of Vi s

q)

_Ef (r,
v (r,g)=V,-V,e" with V% (1,d) =0, ang

f(r,q) >0 a5 = %. Asaparticular case we note

f(r,q)=k(r-r,)(2+sinq), k>0,

. k(r—r,)
v, =-k(2+sinq), v, = —fcosq,
—E(r—ro)(2+sinq)
v, =V, -Ven :
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