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1. INTRODUCTION
In this note, exact solutions of the steady incompressible
Navier-Stokes equations in spherical coordinates have been
obtained. The basic equations for fluid motions are the
Navier-Stokes equation. These equations are non linear and
only a limited number of exact solutions have been obtained.
The existing exact solutions have been published in a wide
variety of journals. A comprehensive recent review of exact
solutions of Navier-Stokes equations is given by Wang [1].
The present paper deals with the exact solution in spherical
coordinates [2].

2. Basic equations
The basic equations in the spherical coordinate system is
governed by the continuity and momentum equations in the
absence of body forces:
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V  is the material time derivative,  is

the nabla operator, p the pressure,  is the dynamic

viscosity of the fluid and 2 is the Laplacian operator.

3. Formulation and Exact Solution of the Problem

Let  ,,r  be coordinates with velocity components

 vvvr ,, , where  denotes the coordinates parallel to the

stagnation point. The , ,rv v v   components of momentum

equations are:
r-component of momentum equation:
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(3)

 - component of momentum equation:
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 - component of momentum equation:
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where /   is the kinematic viscosity of the fluid. If

the flow is independent of , the r and   components of

momentum Eqs. (2) can be solved for rv and v subject

to continuity Eq.  (1).
Let ( , )r  be the potential function, where

1
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where the suffixes denote differentiation and  by definition

satisfies 2 0  . Equations (3) and (4), in special cases,
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may be considered to be given by a potential

function  r ,  . Such type of flow satisfies the equations

(3) and (4) if the pressure is given by
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where po is constant of integration.

In view of all the above discussion and assumptions,
equation (5) reduces to
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Since equation (8) is a nonlinear partial differential equation.
An exact solution [2] to equation (8) is:
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where A and B are constants of integration.

3. Examples

(i)  Flow along a corner
We consider as domain of the flow the region

    0, 0, / 2 , 0, ,D r       

If we seek a velocity v with the properties
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As a particular case we note
( , ) sin(2 ), 0,r kr k   

with velocity field
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(ii)  Flow outside a sphere

Suppose we consider the region

    0 , 0,2 , 0, ,D r r       

and seek a velocity with 0( , ) 0v r   and 0( , )v r V  

as .r A suitable form of v  is
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