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1. INTRODUCTION
In this note, exact solutions of the steady incompressible
Navier-Stokes equations in spherical coordinates have been
obtained. The basic equations for fluid motions are the
Navier-Stokes equation. These equations are non linear and
only a limited number of exact solutions have been obtained.
The existing exact solutions have been published in a wide
variety of journals. A comprehensive recent review of exact
solutions of Navier-Stokes equations is given by Wang [1].
The present paper deals with the exact solution in spherical
coordinates [2].

2. Basic equations
The basic equations in the spherical coordinate system is
governed by the continuity and momentum equations in the
absence of body forces:
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V  is the material time derivative,  is

the nabla operator, p the pressure,  is the dynamic

viscosity of the fluid and 2 is the Laplacian operator.

3. Formulation and Exact Solution of the Problem

Let  ,,r  be coordinates with velocity components

 vvvr ,, , where  denotes the coordinates parallel to the

stagnation point. The , ,rv v v   components of momentum

equations are:
r-component of momentum equation:

2 2

2 2 2

2 2 2 2 2 2

2 2 2

2 2

sin

1 1 1
[

sin

2 cot 2 2

sin

2 2cot
],

r r r
r

r r r

r r

r

v v vvv v v
v

r r r r

v v vp

r r r r

vvv v

r r r r r

v v
r r

  





  


   


   



  
   

  

  
     

   
 

   
   

 

(3)

 - component of momentum equation:
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 - component of momentum equation:

2 2 2

2 2 2 2 2 2

2 2 2 2

2 2

cot

sin

1 1 1
[

sin sin

2 cot 2 2cos

sin sin

1
],

sin

r
r

r

v v v v v v v vv
v

r r r r r

v v vp

r r r r

v v vv

r r r r r

v
r

      

  

  





  


     

 
    



  
    

  

  
    

   
  

   
   



(5)

where /   is the kinematic viscosity of the fluid. If

the flow is independent of , the r and   components of

momentum Eqs. (2) can be solved for rv and v subject

to continuity Eq.  (1).
Let ( , )r  be the potential function, where
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where the suffixes denote differentiation and  by definition

satisfies 2 0  . Equations (3) and (4), in special cases,
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may be considered to be given by a potential

function  r ,  . Such type of flow satisfies the equations

(3) and (4) if the pressure is given by
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where po is constant of integration.

In view of all the above discussion and assumptions,
equation (5) reduces to
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Since equation (8) is a nonlinear partial differential equation.
An exact solution [2] to equation (8) is:
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where A and B are constants of integration.

3. Examples

(i)  Flow along a corner
We consider as domain of the flow the region

    0, 0, / 2 , 0, ,D r       

If we seek a velocity v with the properties
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(ii)  Flow outside a sphere

Suppose we consider the region

    0 , 0,2 , 0, ,D r r       

and seek a velocity with 0( , ) 0v r   and 0( , )v r V  
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